Data Clustering

Assoc. Prof. Kitsana Waiyamai, Ph. D.

Dept. Of Computer Engineering Faculty of Engineering, Kasetsart University Bangkok, Thailand

Unsupervised Learning

- Association Rules
 - •What happens together?
- Data Clustering
 - •What belongs together?

Data Clustering

<u>Data classification</u> organizes data in <u>given classes</u> based on attribute values

=> Supervised-learning!

Data Clustering divides data into meaningful or useful clusters

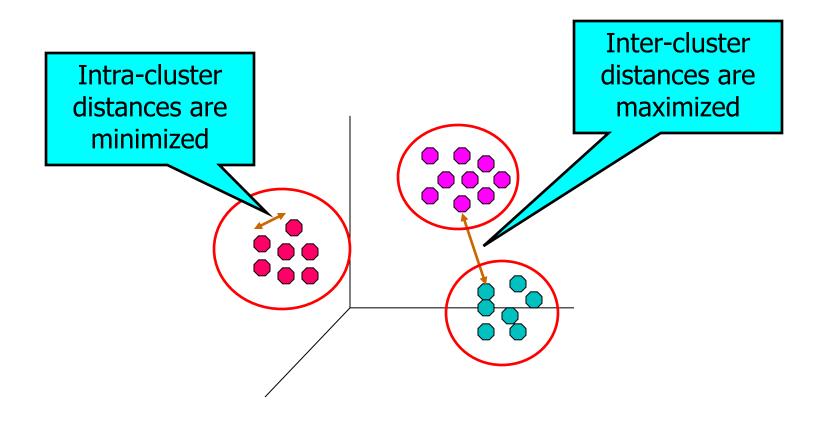
=> Un-Supervised-learning!

Example: 22 Public Utilities

Company	Fixed_	_charge	RoR	Cost	Load	∆ Demand	Sales	Nuclear	Fuel_Cost
Arizona		1.06	9.2	151	54.4	1.6	9077	0	0.628
Boston		0.89	10.3	202	57.9	2.2	5088	25.3	1.555
Central		1.43	15.4	113	53	3.4	9212	0	1.058
Commonwealth		1.02	11.2	168	56	0.3	6423	34.3	0.7
Con Ed NY		1.49	8.8	192	51.2	1	3300	15.6	2.044
Florida		1.32	13.5	111	60	-2.2	11127	22.5	1.241
Hawaiian		1.22	12.2	175	67.6	2.2	7642	0	1.652
Idaho		1.1	9.2	245	57	3.3	13082	0	0.309
Kentucky		1.34	13	168	60.4	7.2	8406	0	0.862
Madison		1.12	12.4	197	53	2.7	6455	39.2	0.623
Nevada		0.75	7.5	173	51.5	6.5	17441	0	0.768
New England		1.13	10.9	178	62	3.7	6154	0	1.897
Northern		1.15	12.7	199	53.7	6.4	7179	50.2	0.527
Oklahoma		1.09	12	96	49.8	1.4	9673	0	0.588
Pacific		0.96	7.6	164	62.2	-0.1	6468	0.9	1.4
Puget		1.16	9.9	252	56	9.2	15991	0	0.62
San Diego		0.76	6.4	136	61.9	9	5714	8.3	1.92
Southern		1.05	12.6	150	56.7	2.7	10140	0	1.108
Texas		1.16	11.7	104	54	-2.1	13507	0	0.636
Wisconsin		1.2	11.8	148	59.9	3.5	7287	41.1	0.702
United		1.04	8.6	204	61	3.5	6650	0	2.116
Virginia		1.07	9.3	174	54.3	5.9	10093	26.6	1.306

What is Data Clustering?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



Data Clustering

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Clustering = set of clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a pre-processing step for other algorithms
 - As a stand-alone tool to get insight into data distribution

Clustering Characteristic

- Provides a way to learn about the structure of complex data
- Simply finds structure that exists in the data without regard to any target variable => un-supervised learning
- Finding clusters is not often an end in itself
- Once clusters have been detected, other methods must be applied in order to figure out <u>Meaning</u> of clusters

Example: Public Utilities

Goal: find clusters of similar utilities

Data: 22 firms, 8 variables

Fixed-charge covering ratio

Rate of return on capital

Cost per kilowatt capacity

Annual load factor

Growth in peak demand

Sales

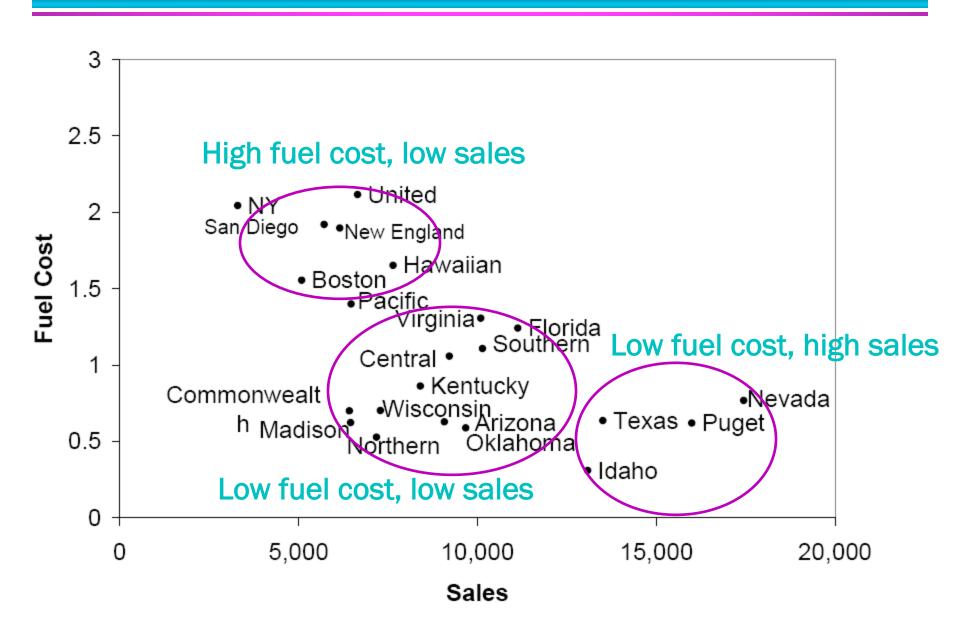
% nuclear

Fuel costs per kwh

Example: 22 Public Utilities

Company	Fixed_	_charge	RoR	Cost	Load	∆ Demand	Sales	Nuclear	Fuel_Cost
Arizona		1.06	9.2	151	54.4	1.6	9077	0	0.628
Boston		0.89	10.3	202	57.9	2.2	5088	25.3	1.555
Central		1.43	15.4	113	53	3.4	9212	0	1.058
Commonwealth		1.02	11.2	168	56	0.3	6423	34.3	0.7
Con Ed NY		1.49	8.8	192	51.2	1	3300	15.6	2.044
Florida		1.32	13.5	111	60	-2.2	11127	22.5	1.241
Hawaiian		1.22	12.2	175	67.6	2.2	7642	0	1.652
Idaho		1.1	9.2	245	57	3.3	13082	0	0.309
Kentucky		1.34	13	168	60.4	7.2	8406	0	0.862
Madison		1.12	12.4	197	53	2.7	6455	39.2	0.623
Nevada		0.75	7.5	173	51.5	6.5	17441	0	0.768
New England		1.13	10.9	178	62	3.7	6154	0	1.897
Northern		1.15	12.7	199	53.7	6.4	7179	50.2	0.527
Oklahoma		1.09	12	96	49.8	1.4	9673	0	0.588
Pacific		0.96	7.6	164	62.2	-0.1	6468	0.9	1.4
Puget		1.16	9.9	252	56	9.2	15991	0	0.62
San Diego		0.76	6.4	136	61.9	9	5714	8.3	1.92
Southern		1.05	12.6	150	56.7	2.7	10140	0	1.108
Texas		1.16	11.7	104	54	-2.1	13507	0	0.636
Wisconsin		1.2	11.8	148	59.9	3.5	7287	41.1	0.702
United		1.04	8.6	204	61	3.5	6650	0	2.116
Virginia		1.07	9.3	174	54.3	5.9	10093	26.6	1.306

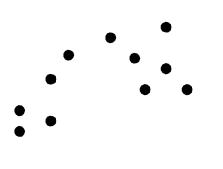
Sales & Fuel Cost: 3 rough clusters can be seen

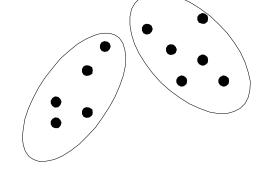


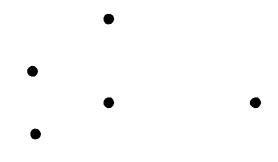
Types of Clusterings

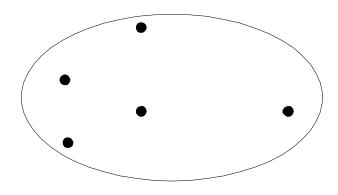
- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering





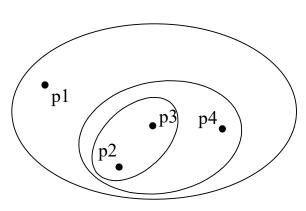




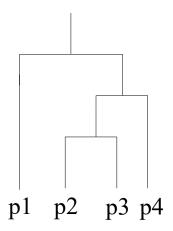
Original Points

A Partitional Clustering

Hierarchical Clustering

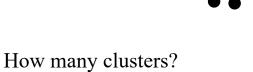


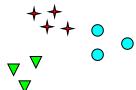
Hierarchical Clustering

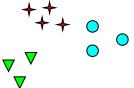


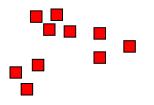
Dendrogram

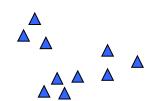
Notion of a Cluster can be Ambiguous

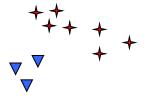












Two Clusters

Four Clusters

Partitioning Algorithms: Basic Concept

Given a *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion

- Global optimal: exhaustively enumerate all partitions
- Heuristic methods: k-means and k-medoids algorithms
- <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
- <u>k-medoids</u> or <u>PAM</u> (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster
- K-Means: Construct a partition of a database D of n objects into a set of k clusters, s.t., min sum of squared distance

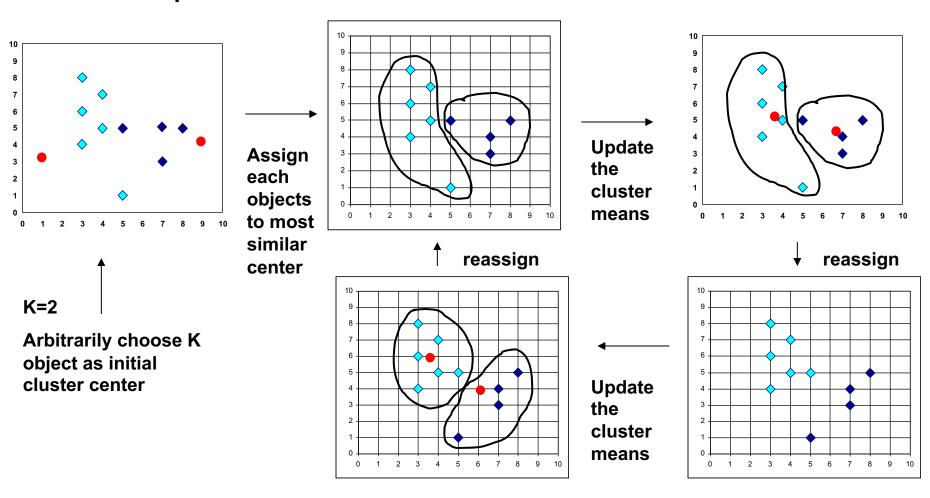
$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - m_i)^2$$

Simple Clustering: K-means

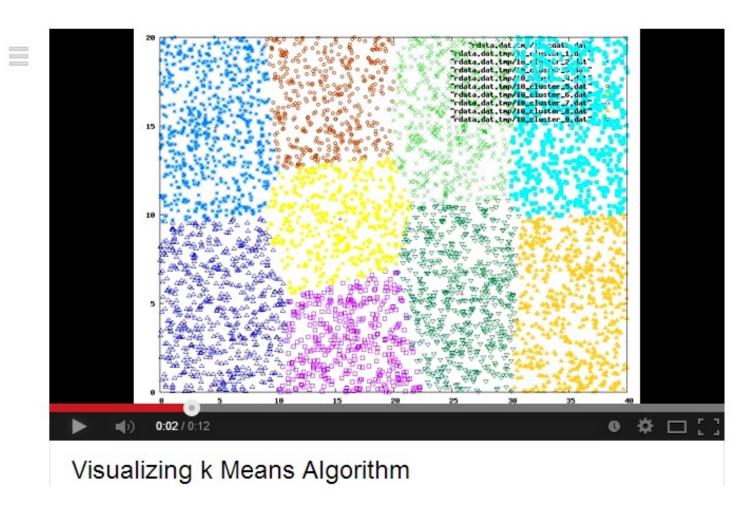
- Uses a set of clusters(K), then iteratively recalculates the center of each cluster.
- Works with numeric data only.
- 1) Pick a number (K) of cluster centers (at random)
- Assign every item to its nearest cluster center (example, using Euclidean distance)
- 3) Move each cluster center to the mean of its assigned items
- 4) Repeat steps 2,3 until convergence (or change in cluster assignments less than a threshold)

The K-Means Clustering Method

Example



K-mean clustering visualization



http://www.youtube.com/watch?v=gSt4_kcZPxE

Simple Clustering: K-means

Not changed

- Data points

Changed

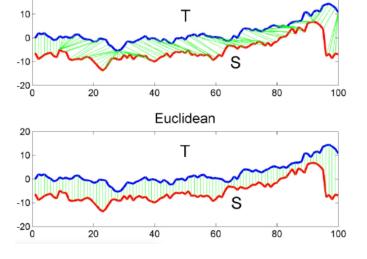
- Boundary
- Centroid
- Membership

Distance Between Two Records

Euclidean Distance is most popular:

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

- > Problem: Raw distance measures are highly influenced by scale of measurements
- >Solution: normalize (standardize) the data first
 - Subtract mean, divide by std. deviation
 - Also called z-scores
- Other Distances
 - Correlation-based similarity
 - [Continuous + categorical] Gower's similarity
 - Text-Analytics => Angle [lot of words]
 - Time series => DTW
 - Etc.



DTW

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Dimension reduction
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters,
 - Merge clusters that are 'close'
 - Etc.

K-means clustering summary

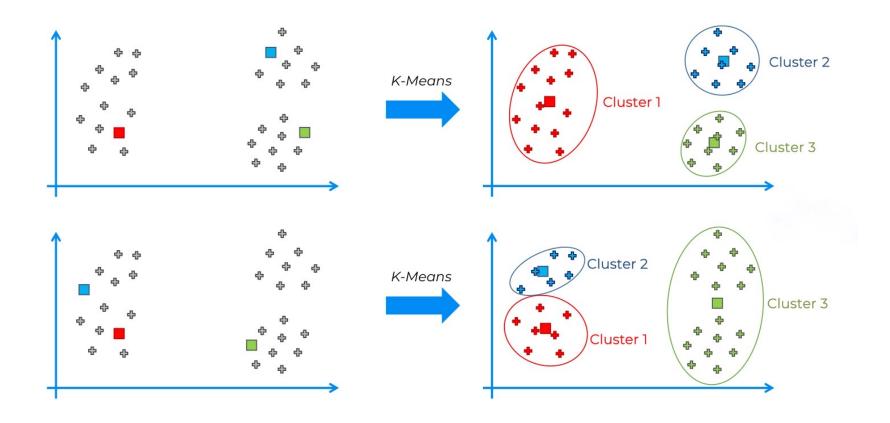
Advantages

- Items automatically assigned to clusters
- Simple, understandable
- Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n

Disadvantages

- Must pick number of clusters before hand
- Result can vary significantly depending on initial choice of seeds (number and position)
- All items forced into a cluster
- Too sensitive to outliers
- Not suitable to discover <> clusters (size, density) and with non-globular shapes

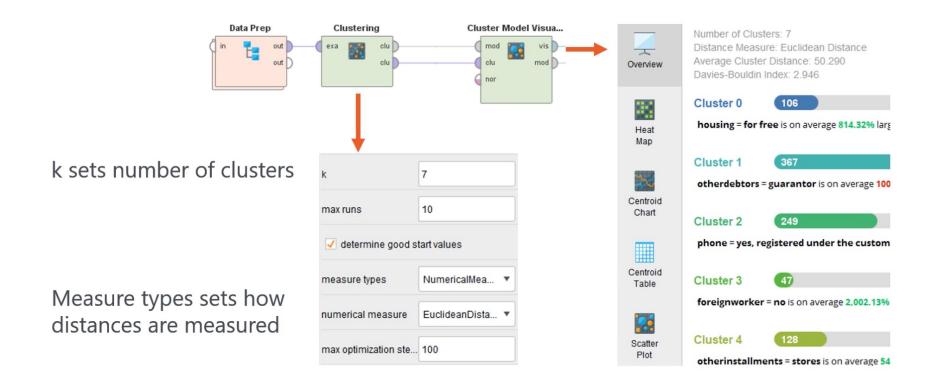
Some Problem(s) of K-Means



Result can vary significantly depending on initial choice of seeds

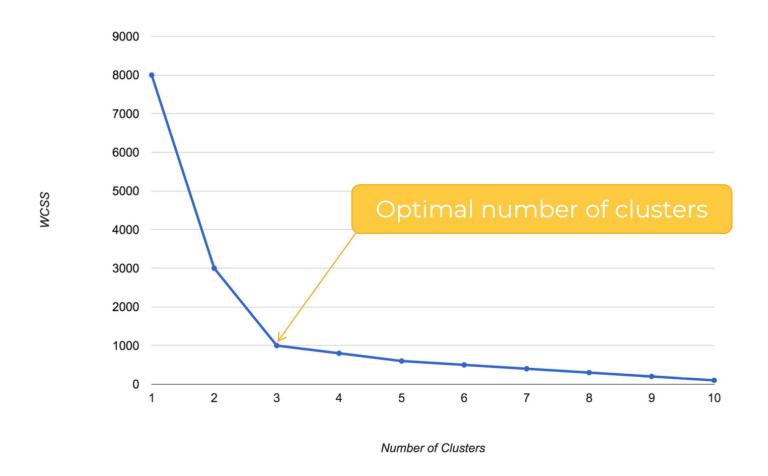
Use **K-Mean++** [David Arthur and Sergei Vassilvitskii 2007] to determine good start seeds.

RapidMiner K-Mean Clustering



How to know K: Elbow method

- First, draw relationship between the number of clusters and Within Cluster Sum of Squares (WCSS),
- Then we select the number of clusters where the change in WCSS begins to level off.

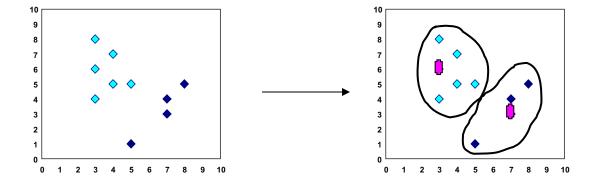


How to know K: Elbow method

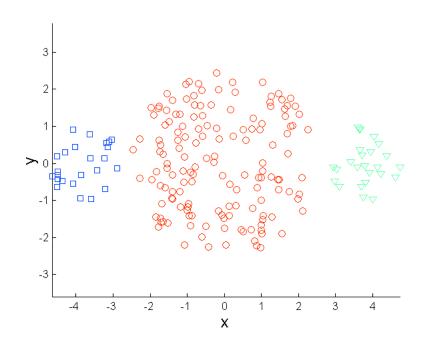


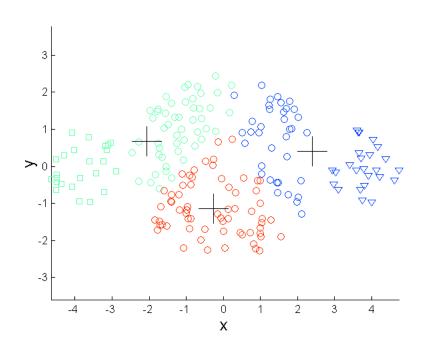
K-means variations

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
 - Mean of 1, 3, 5, 7, 1009 is
 - Median of 1, 3, 5, 7, 1009 is
 - Median advantage: not affected by extreme values
- K-Medoids or PAM: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.
- Etc.



Limitations of K-means: Differing Sizes

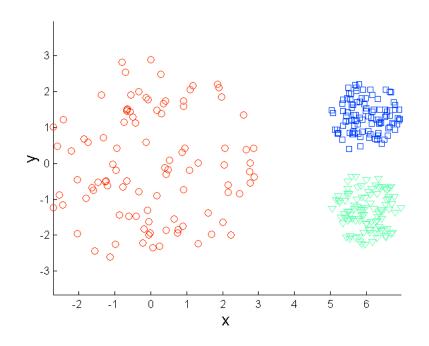


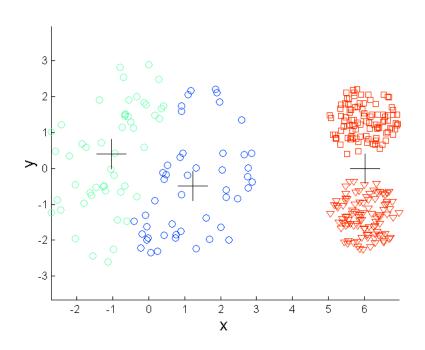


Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

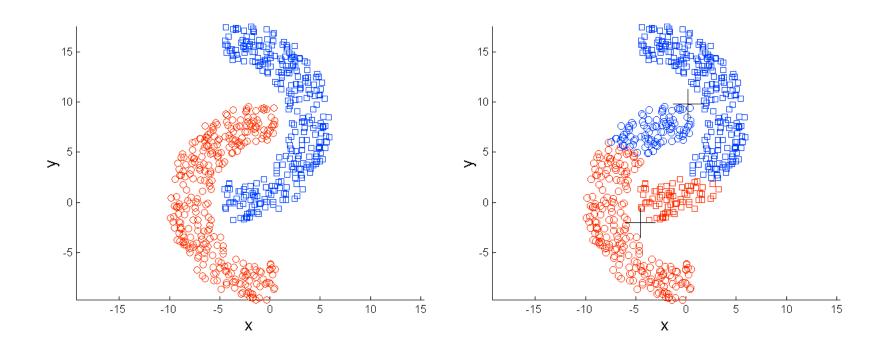




Original Points

K-means (3 Clusters)

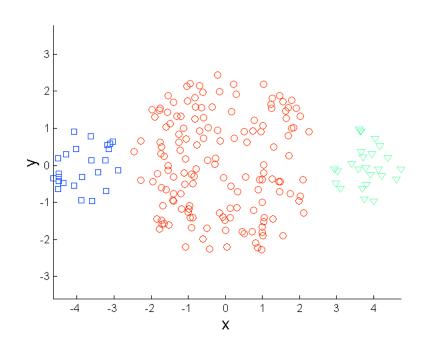
Limitations of K-means: Non-globular Shapes

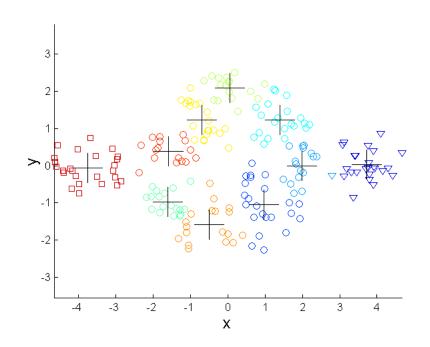


Original Points

K-means (2 Clusters)

Overcoming K-means Limitations





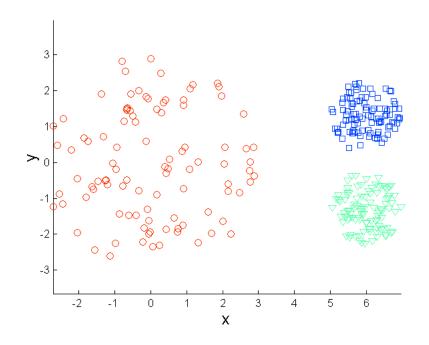
Original Points

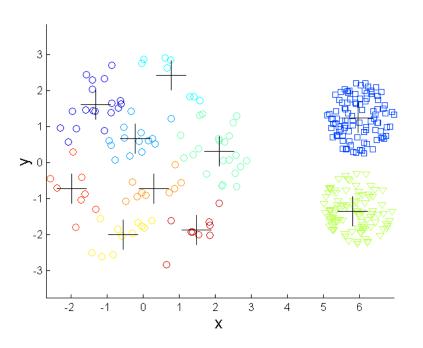
K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.

Overcoming K-means Limitations

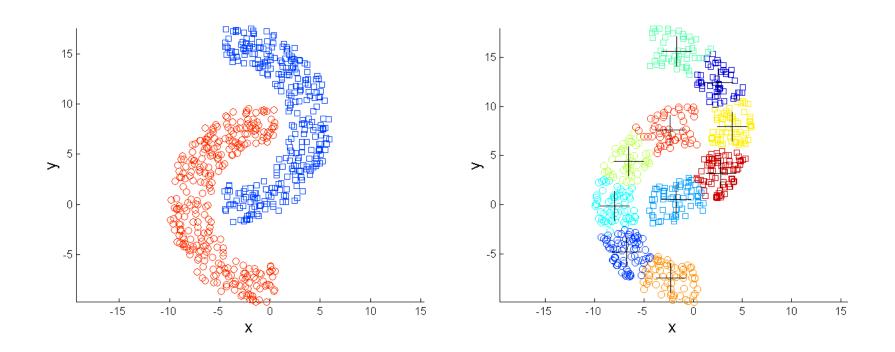




Original Points

K-means Clusters

Overcoming K-means Limitations



Original Points

K-means Clusters

Cluster Validation

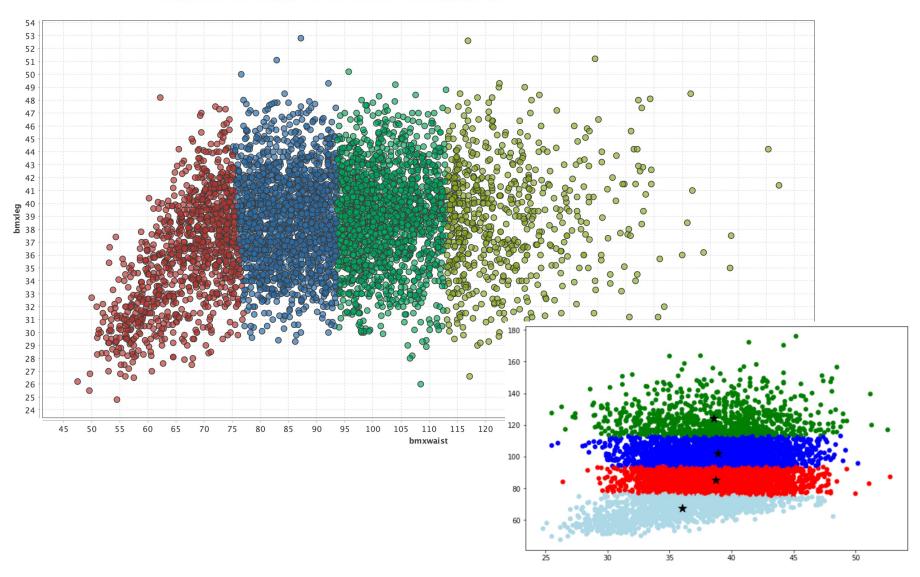
- Cluster Interpretability
- Cluster accuracy
- Cluster separation
- Etc.

Cluster Interpretability

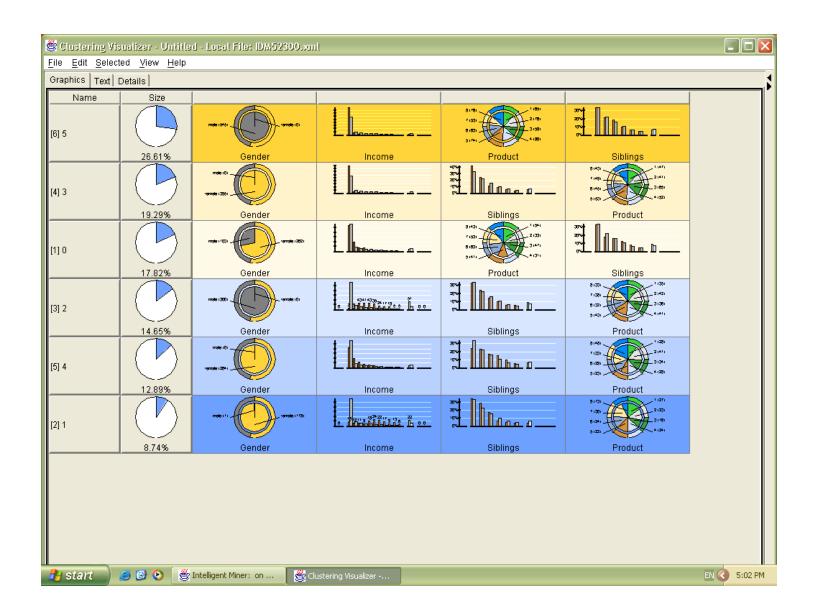
- Goal: Obtain meaningful and useful clusters
- Possible solutions
 - Summary statistics of each cluster
 - Use visualization
 - Distribution compared to the whole population
 - for example,
 - Mean (of each attribute in a cluster) compared to Mean of the population
 - Use dimension reduction
 - Etc.

Cluster Interpretability: 2-Dimension

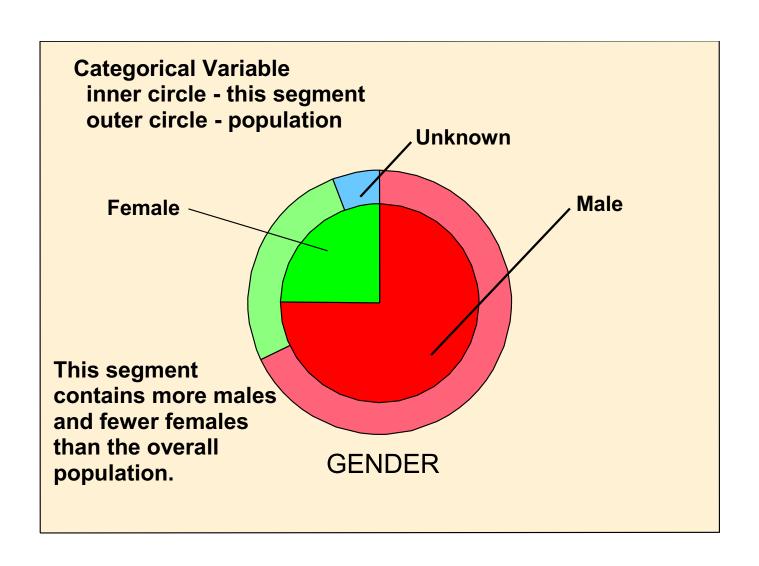
Cluster 0 (2332) Cluster 1 (2239) Cluster 2 (886) Cluster 3 (1442)



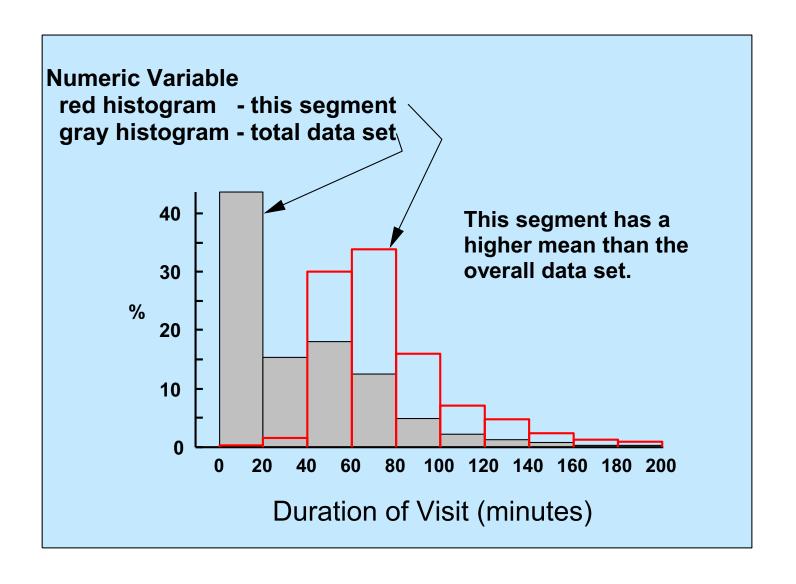
Cluster Interpretability: N-Dimensions



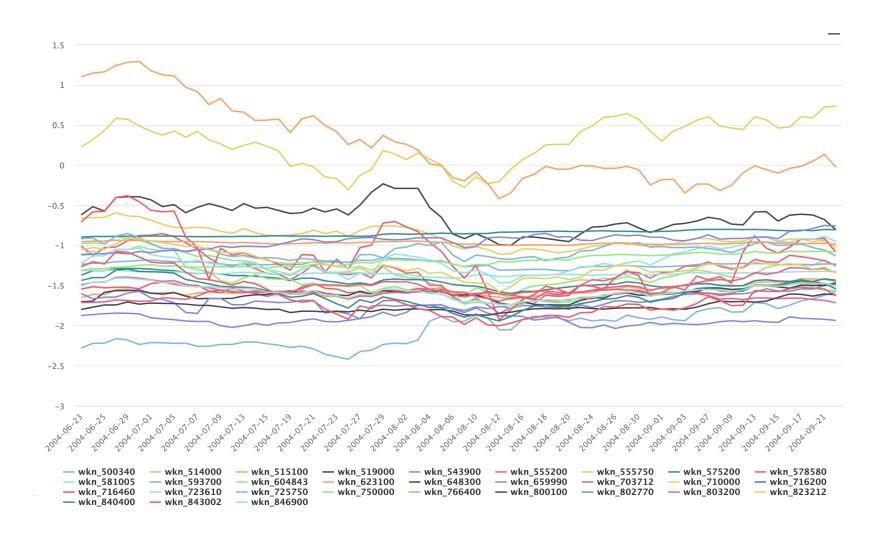
Cluster Interpretability: Categorical variables



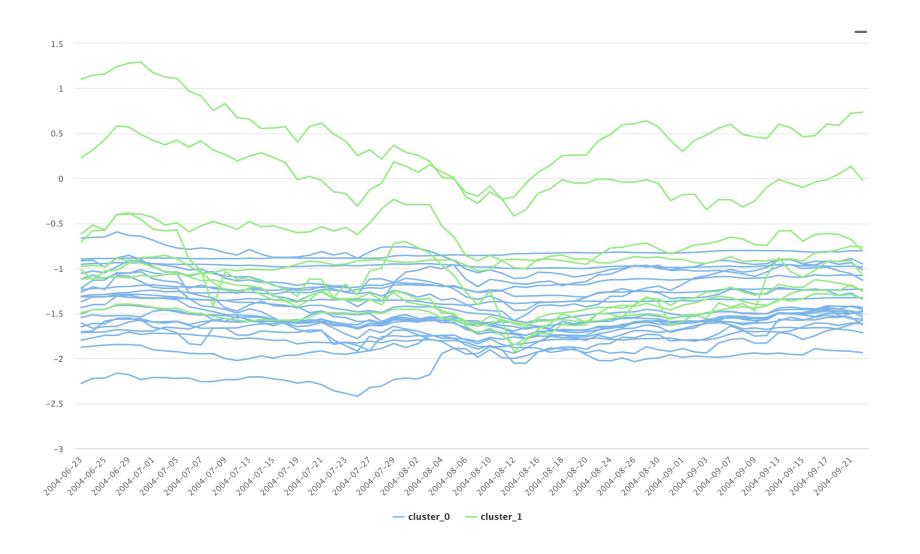
Cluster Interpretability: Numerical variables



Time series data clustering



Cluster Visualization: Time series data



Cluster Separation

Separation – Check ratio of between-cluster variation to within-cluster variation

Company	Fixed_charge	RoR	Cost	Load	∆ Demand	Sales	Nuclear	Fuel_Cost
Arizona	1.06	9.2	151	54.4	1.6	9077	0	0.628
Boston	0.89	10.3	202	57.9	2.2	5088	25.3	1.555
Central	1.43	15.4	113	53	3.4	9212	0	1.058
Commonwealth	1.02	11.2	168	56	0.3	6423	34.3	0.7
Con Ed NY	1.49	8.8	192	51.2	1	3300	15.6	2.044
Florida	1.32	13.5	111	60	-2.2	11127	22.5	1.241
Hawaiian	1.22	12.2	175	67.6	2.2	7642	0	1.652
Idaho	1.1	9.2	245	57	3.3	13082	0	0.309
Kentucky	1.34	13	168	60.4	7.2	8406	0	0.862
Madison	1.12	12.4	197	53	2.7	6455	39.2	0.623
Nevada	0.75	7.5	173	51.5	6.5	17441	0	0.768
New England	1.13	10.9	178	62	3.7	6154	0	1.897
Northern	1.15	12.7	199	53.7	6.4	7179	50.2	0.527
Oklahoma	1.09	12	96	49.8	1.4	9673	0	0.588
Pacific	0.96	7.6	164	62.2	-0.1	6468	0.9	1.4
Puget	1.16	9.9	252	56	9.2	15991	0	0.62
San Diego	0.76	6.4	136	61.9	9	5714	8.3	1.92
Southern	1.05	12.6	150	56.7	2.7	10140	0	1.108
Texas	1.16	11.7	104	54	-2.1	13507	0	0.636
Wisconsin	1.2	11.8	148	59.9	3.5	7287	41.1	0.702
United	1.04	8.6	204	61	3.5	6650	0	2.116
Virginia	1.07	9.3	174	54.3	5.9	10093	26.6	1.306

Cluster Centroids

Cluster	Fixed_charge	RoR	Cost	Load_factor
Cluster-1	0.89	10.3	202	57.9
Cluster-2	1.43	15.4	113	53
Cluster-3	1.06	9.2	151	54.4

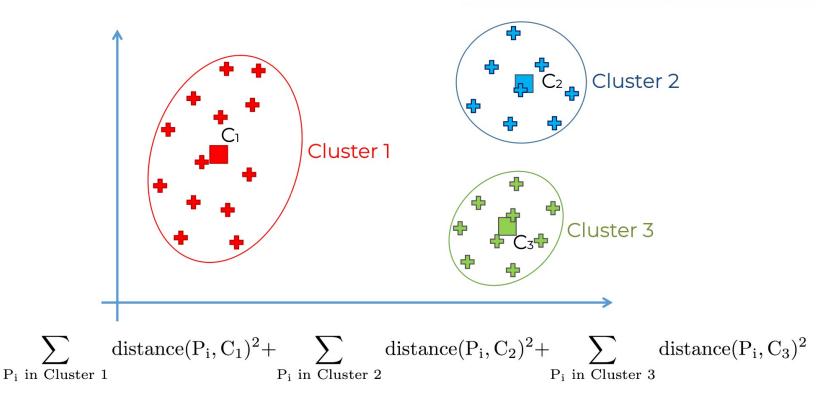
We chose k = 3

4 of the 8 variables are shown

Within-Cluster Squared Distance: WCSS

Within Cluster Sum of Squares (WCSS) is the sum of the squared distance between each member of the cluster and its centroid

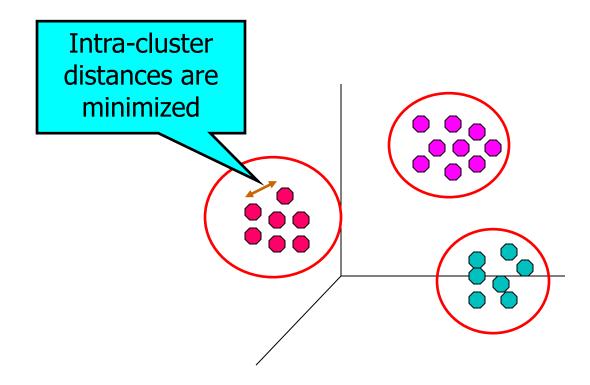
WSS =
$$\sum_{i=1}^{m} (x_i - c_i)^2$$



Cluster Distance Performance in RapidMiner

Avg._within_centroid_distance

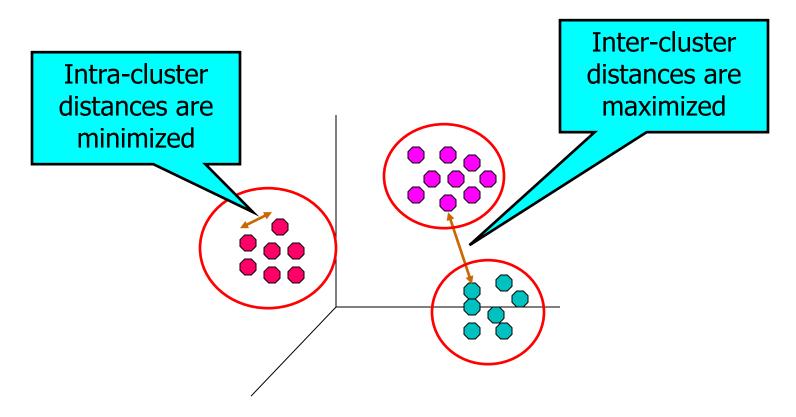
- Average within cluster distance
- Calculated by averaging the distance between the centroid and all examples of a cluster.



Cluster Distance Performance in RapidMiner

Davies-Bouldin index

- The algorithms that produce clusters with low intra-cluster distances (high intra-cluster similarity) and high inter-cluster distances (low inter-cluster similarity) will have a low Davies-Bouldin index.
- The algorithm that produces a collection of clusters with the smallest Davies–Bouldin index is considered the best algorithm based on this criterion.



Within-Cluster Dispersion

Data summary (In Original coordinates)

Cluster	#Obs	Average distance in cluster
Cluster-1	12	1748.348058
Cluster-2	3	907.6919822
Cluster-3	7	3625.242085
Overall	22	2230.906692

Clusters 1 and 2 are relatively tight, cluster 3 very loose

Conclusion: Clusters 1 & 2 well defined, not so for cluster 3

Next step: try again with k=2 or k=4

Distance Between Clusters

Distance between	Cluster-1	Cluster-2	Cluster-3
Cluster-1	0	5.03216253	3.16901457
Cluster-2	5.03216253	0	3.76581196
Cluster-3	3.16901457	3.76581196	0

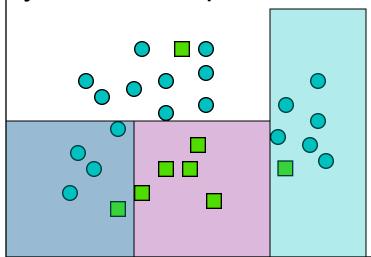
Clusters 1 and 2 are relatively wellseparated from each other, while cluster 3 not as much

Use of Labelled Data for Evaluating Cluster Accuracy

Use of ground truth labels

Accuracy—Benchmarking on existing labels

Accuracy in terms of precision, recall



Summary

- Cluster analysis is an exploratory tool, very useful only when it produces meaningful clusters
- 3 main types of clustering
 - Partitioning clustering is computationally cheap and more stable;
 requires user to set k
 - Hierarchical clustering gives visual representation of different levels of clustering
 - Density-based clustering is able to discover clusters of arbitrary shape
- Other clustering approaches
 - Grid-based approach
 - Model-based
 - Frequent pattern-based
 - Constraint-based
 - <u>Link-based clustering</u>
 - Etc.

Python: K-Mean

```
1 # K-Means Clustering
 2 # Importing the libraries
 3 import numpy as np
 4 import matplotlib.pyplot as plt
 5 import pandas as pd
 7 # Importing the dataset
 8 dataset = pd.read csv('Mall Customers.csv')
 9 X = dataset.iloc[:, [3, 4]].values
10 # y = dataset.iloc[:, 3].values
11
12 # Using the elbow method to find the optimal number of clusters
13 from sklearn.cluster import KMeans
14 \text{ wcss} = []
15 for i in range(2, 11):
      kmeans = KMeans(n clusters = i, init = 'k-means++', random state = 0)
16
17
      kmeans.fit(X)
      wcss.append(kmeans.inertia_)
19 plt.plot(range(2, 11), wcss)
20 plt.title('The Elbow Method')
21 plt.xlabel('Number of clusters')
22 plt.ylabel('WCSS')
23 plt.show()
24
25 # Fitting K-Means to the dataset
26 kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 0)
27 y kmeans = kmeans.fit predict(X)
28
29 # Visualising the clusters
30 plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], S = 100, C = 'red', label = 'Cluster 1')
31 plt.scatter(X[y \text{ kmeans} == 1, 0], X[y \text{ kmeans} == 1, 1], S = 100, C = \text{blue}, label = 'Cluster 2')
32 plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
33 plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
34 plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
35 plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
36 plt.title('Clusters of customers')
37 plt.xlabel('Annual Income (k$)')
38 plt.ylabel('Spending Score (1-100)')
39 plt.legend()
40 plt.show()
```